首页> 外文OA文献 >Microfluidic platform for electrophysiological studies on Xenopus laevis oocytes under varying gravity levels
【2h】

Microfluidic platform for electrophysiological studies on Xenopus laevis oocytes under varying gravity levels

机译:微重力作用下非洲爪蟾卵母细胞电生理研究的微流控平台

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Voltage clamp measurements reveal important insights into the activity of membrane ion channels. While conventional voltage clamp systems are available for laboratory studies, these instruments are generally unsuitable for more rugged operating environments. In this study, we present a non-invasive microfluidic voltage clamp system developed for the use under varying gravity levels. The core component is a multilayer microfluidic device that provides an immobilisation site for Xenopus laevis oocytes on an intermediate layer, and fluid and electrical connections from either side of the cell. The configuration that we term the asymmetrical transoocyte voltage clamp (ATOVC) also permits electrical access to the cytosol of the oocyte without physical introduction of electrodes by permeabilisation of a large region of the oocyte membrane so that a defined membrane patch can be voltage clamped. The constant low level air pressure applied to the oocyte ensures stable immobilisation, which is essential for keeping the leak resistance constant even under varying gravitational forces. The ease of oocyte mounting and immobilisation combined with the robustness and complete enclosure of the fluidics system allow the use of the ATOVC under extreme environmental conditions, without the need for intervention by a human operator. Results for oocytes over-expressing the epithelial sodium channel (ENaC) obtained under laboratory conditions as well as under conditions of micro- and hypergravity demonstrate the high reproducibility and stability of the ATOVC system under distinct mechanical scenarios.
机译:电压钳位测量揭示了对膜离子通道活性的重要见解。尽管常规的电压钳系统可用于实验室研究,但这些仪器通常不适合更恶劣的操作环境。在这项研究中,我们提出了一种非侵入性的微流体电压钳系统,该系统是为在不同重力水平下使用而开发的。核心组件是一个多层微流控设备,可为非洲爪蟾卵母细胞在中间层上提供固定位点,并从细胞的任一侧提供流体和电连接。我们称其为不对称跨卵母细胞电压钳(ATOVC)的配置还允许通过卵母细胞膜大面积的透化而无物理引入电极的方式电进入卵母细胞的胞质溶胶,从而可以对电压限定的膜片进行电压钳制。施加在卵母细胞上的恒定低气压确保稳定的固定,这对于即使在重力变化的情况下也能保持恒定的防漏性至关重要。卵母细胞易于安装和固定,以及流体系统的坚固性和完全封闭性,使得ATOVC可以在极端环境条件下使用,而无需人工干预。在实验室条件下以及在微重力和超重力条件下获得的卵母细胞过表达上皮钠通道(ENaC)的结果表明,ATOVC系统在不同的机械情况下具有很高的重现性和稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号